Sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate

A new publication from Opto-Electronic Advances considers an over 20 μJ THz laser pulse generated at 1 kHz in gas media.

Terahertz (THz) science and technology has received extensive attention from scientific researchers from all around the world over the past 20 years because of its prospective application potential in security imaging, medical diagnosis, military, wireless communications and astronomy. However, the development of high-power broadband THz radiation source has been a challenging task in the above-mentioned fields.

Among various THz radiation sources, THz radiation source based on femtosecond laser filament has the advantages of broadband (~200 THz), high amplitude (100 MV/cm) and no limitation of damage threshold. In addition, the THz generation method based on the femtosecond laser filamentation confines the THz wave inside the filament, which can eliminate the diffraction and absorption during the propagation of the THz wave in the atmosphere and make the remote delivery of the THz wave become possible.

1 Like